
Cloud Snooper Attack 
Bypasses AWS 
Security Measures
An investigation into an attack against a cloud computing 
server reveals an unusual and innovative way for malware to 
communicate through Amazon’s firewalls 

Sergei Shevchenko



2March 2020

Cloud Snooper - SophosLabs

Contents

Rootkit in the Cloud 3

Anomalous traffic raises alerts 3

Dismantling the Cloud Snooper tools 3

The Cloud Snooper communications handler 4

How Cloud Snooper communicates through the firewall 5

Practical examples of communication with the Snooper 5

Explaining the attack: Wolves in sheep’s clothing 7

Sample #3 11

Logging 13

Some additional details on unused/broken 'rootkit' functionality 13

Building a Client 14

Another variant of the rootkit 15

Sample #4 15

Sample #5 15

Sample #6 16

Sample #7 16

Sample #8 18

Sample #9 18

Windows Malware 19

Sample #10 19

Sample #11 - encrypted payload 19

Conclusion 23

IOCs 23



3March 2020

Cloud Snooper - SophosLabs

Rootkit in the Cloud
In the course of investigating a malware infection of cloud infrastructure servers 
hosted in the Amazon Web Services (AWS) cloud, SophosLabs discovered a 
sophisticated attack that employed a unique combination of techniques. This 
combination permits the malware to communicate freely with its command 
and control (C2) servers through the firewall that should, under normal 
circumstances, prevent that communication from reaching the infected server. 

The complexity of the attack and the use of a bespoke APT (Advanced 
Persistent Threat) toolset gives us reason to believe that the malware and its 
operators were an advanced threat actor, possibly nation-state sponsored.

The compromised systems hosted by Amazon Web Services (AWS) 
were running both Linux and Windows EC2 instances.

Anomalous traffic raises alerts
As often happens with incidents like this, our investigation started when someone 
noticed an anomaly. While the AWS security groups (SGs) were properly tuned, set 
up to only allow inbound HTTP or HTTPS traffic, the compromised Linux system 
was still listening for inbound connections on ports 2080/TCP and 2053/TCP.

An analysis of this system revealed the presence of a rootkit that granted the 
malware's operators the ability to remotely control the server through the AWS 
SGs. But this rootkit's capabilities are not limited to doing this in the Amazon 
cloud. It could also be used to communicate with, and remotely control, malware 
on any server behind any boundary firewall – even an on-premises server.

By unwinding other elements of this attack, we further identified 
other Linux hosts infected with the same or a similar rootkit.

Finally, we identified a compromised Windows system with a backdoor 
that communicated with a similar C2 as other compromised Linux hosts, 
using a very similar configuration format. The backdoor is apparently 
based on source code of the infamous Gh0st RAT malware.

At this point in the investigation, we still have some open questions. For 
example, it is still unclear how the attackers managed to compromise the 
client's system in the first place. One of the working theories is that the attackers 
broke into a server through SSH protected with password authentication.

Dismantling the Cloud Snooper tools
As you will see from the description below, some samples we collected are 
directly related to each other, while others belong to a completely different 
malware family. Nevertheless, all these samples were collected from the 
same infrastructure, and thus, we consider them part of the same toolset.

Even though some questions remain, we believe it's important to share 
all the evidence we have collected with the security community, network 
administrators, and researchers to raise awareness of this attack.



4March 2020

Cloud Snooper - SophosLabs

The description starts with the Linux malware, then progresses into its 
Windows counterpart that is apparently based on Gh0st RAT.

Overall, we discovered and studied 10 samples in the course 
of the investigation, which can be broken down as:

# MD5 Name File size Platform

Linux Malware, Group 1

1 a3f1e4b337ba1ed35cac3fab75cec369 snd_floppy 738,368 ELF64, x86-64

2 6a1d21d3fd074520cb6a1fda76d163da snd_floppy 738,368 ELF64, x86-64

3 c7a3fefb3c231ad3b683f00edd0e26e4 snoopy 305,309 ELF64, x86-64

4 9cd93bb2a12cf4ef49ee1ba5bb0e4a95 snd_floppy 544,832 ELF64, x86-64

5 15e96f0ee3abc9d5d2395c99aabc3b92 vsftpd 60,456 ELF64, x86-64

6 2b7d54251068a668c4fe8f988bfc3ab5 ips 35,580 ELF32, x86

Linux Malware, Group 2 – Gh0st RAT

7 ecac141c99e8cef83389203b862b24fd snort 64,412 ELF32, x86

8 67c8235ac0861c8622ac2ddb1f5c4a18 javad 64,412 ELF32, x86

9 850bf958f07e6c33a496b39be18752f3 nood.bin 66,000 ELF32, x86

Windows Malware – Gh0st RAT

10 a59c83285679296758bf8589277abde7 NSIProvider.dll 219,648 PE32, x86

11 76380fea8fb56d3bb3c329f193883edf NSIProvider.dll.crt 516,097 [encrypted]

The Cloud Snooper 
communications handler
The central piece of the attack is a file named snd_floppy – a 
kernel module that sets up a network packet filter, using a Netfilter 
hook (NF_INET_LOCAL_IN and NF_INET_LOCAL_OUT). 

This component was instrumental in giving the malware's operators the ability to 
communicate with the malware, despite the firewall protecting the AWS EC2 servers.

The two nearly identical samples of snd_floppy (file snd_floppy.
ko) recovered from two different compromised systems are: 

Sample #1
MD5 a3f1e4b337ba1ed35cac3fab75cec369

SHA1 bdd3930938336cc0b1d979d6d40ab0402a4e8c6d

SHA-256 959796a5b19d61286246ec27e3aef9b8ecc9ea05937da3aa1e98db07df321873

File size 738,368 bytes

Internal name snd_floppy

Sample #2 (almost identical to #1):
MD5 6a1d21d3fd074520cb6a1fda76d163da

SHA1 d253788241cb52a8c41ff625d423851ba4768545

SHA-256 a7e288462fbd89758a2783908537e851dfcd841f213266b19c0dbad8827b8682

File size 738,368 bytes

Internal name snd_floppy



5March 2020

Cloud Snooper - SophosLabs

How Cloud Snooper communicates 
through the firewall
The NF_INET_LOCAL_IN is a type of hook that is triggered 
before the packet reaches the destination port.

The installed hook handler inspects the socket buffer of every IPv4 packet, 
looking for a command concealed within a header – the command being 
the source port number of the packet originating from the attacker's 
machine. These commands/source ports can be one of the following 
port numbers: 1010, 2020, 6060, 7070, 8080, or 9999. 

Firewalls typically prevent machines behind the firewall from receiving 
traffic sent to arbitrary destination ports, but they don't pay attention 
to the source ports, because source ports are normally ephemeral, 
and not relevant to the server or the services it is hosting.

In a typical cloud instance, the server may be set up to receive traffic from any IP 
address on port 80/TCP (for HTTP) and on 443/TCP (for HTTPS), so the firewall 
will let any traffic to those ports through to the server. So long as the traffic 
coming in to one of these standard ports fits the pattern the communications 
handler is looking for, it will execute one of its built-in instructions. Anything else 
will be ignored, and the server will serve web pages as normal to browsers.

Practical examples of communication with the Snooper
For example, if the communications handler receives a TCP SYN packet with 
an origin port of 6060, the malware will decrypt an embedded file (SHA-256: 
ec22c6e3537fcc0003bb73dd42f41ae077b2cb3ad9cdab295bca46dc91eac1e1) 
that has been encrypted with RC4 (the key is 'YaHo0@').

It will then drop that decrypted file as /tmp/snoopy, wait for half a second, and 
then execute it as a usermode application with the call_usermodehelper() 
syscall. Immediately after that, it deletes the /tmp/snoopy file, so the snoopy 
application remains running in memory with no physical file present.

The commands passed to two consecutive call_usermodehelper() syscalls are:

/bin/sh -c /tmp/snoopy

rm -rf /tmp/snoopy

The commands above will run and then delete the file from the filesystem, 
but an active snoopy process listening on ports 2053 and 2080 remains:



6March 2020

Cloud Snooper - SophosLabs

If the command is 9999 as a TCP SYN packet, the  /tmp/snoopy 
process self-terminates (in case killall is supported by OS), by 
passing the following commands to call_usermodehelper() syscall.

/bin/sh -c /tmp/snoopy

rm -rf /tmp/snoopy

killall /tmp/snoopy

NOTE: executing snoopy again while it's already running has no 
effect; by using a file lock mechanism, snoopy makes sure only 
one instance is running. If that happens, it will output:

[ERROR] there is already a instance.

Here is the logic of the NF_INET_LOCAL_IN hook handler, which listens 
for SYN packets sent to the server, using the various source ports:

if tcp:

    if tcp.src_port == 6060:

        if tcp.flags == SYN:

            drop_payload()        # drops/runs snoopy

            return NF_STOP

    elif tcp.src_port == 7070:

        tcp.dst_port = 2080

        adjust_tcp_checksum()

        return NF_STOP

    elif tcp.src_port == 9999:

        if tcp.flags == SYN:

            kill_payload()        # kills snoopy process

            return NF_STOP

    elif tcp.src_port == 2020:

        return NF_STOP

    elif tcp.src_port == 1010:

        tcp.dst_port = 22

        adjust_tcp_checksum()

        return NF_STOP

    else:

        return NF_ACCEPT

elif udp:

    if udp.src_port == 8080:

        udp.dst_port = 2053

        adjust_udp_checksum()

        return NF_STOP

else:

    return NF_ACCEPT



7March 2020

Cloud Snooper - SophosLabs

And here is the logic of the NF_INET_LOCAL_OUT hook handler:

if tcp:

    if tcp.dst_port == 7070:

        tcp.src_port = 443        # or, 80 in another variant

        adjust_udp_checksum()

        return NF_STOP

    if tcp.dst_port == 2020:

        return NF_STOP

    if tcp.dst_port == 1010:

        tcp.src_port = 443        # or, 80 in another variant

        adjust_udp_checksum()

        return NF_STOP

    else:

        return NF_ACCEPT

elif upd:

    if udp.dst_port == 8080:

        udp.src_port = 53

        return NF_STOP

else:

    return NF_ACCEPT

Explaining the attack: Wolves in sheep’s clothing 



8March 2020

Cloud Snooper - SophosLabs

In the illustration above, our castle represents the targeted server infrastructure. In the 
case of the incident we investigated, the server was hosted by Amazon Web Services 
(AWS). At its perimeter, the AWS Security Groups, a set of firewall rules that provide 
security at the protocol and port access level, limit the inbound network traffic. 

For example, you might typically set up an AWS Security Group that only allows web 
traffic – that is, TCP packets that arrive at ports 80 or 443 – to reach your server. 
Network traffic with any other destination port never makes it past the SGs. 

The infection involves a rootkit that inspects network traffic, 
and a backdoor that the attackers leverage the rootkit to send 
commands to, and receive data from, the backdoor.

In order to bypass the AWS Security Groups, depicted here as guards, the 
attackers communicate with the rootkit by sending innocent-looking requests 
(depicted in the illustration as a wolf in sheep's clothing) to the web server on 
the normal web server ports. A listener that inspects inbound traffic before it 
reaches the web server intercepts the specially-crafted requests, and sends 
instructions to the malware based on characteristics of those requests.



9March 2020

Cloud Snooper - SophosLabs

The listener sends a "reconstructed" C2 command to the backdoor Trojan 
installed by the rootkit. Depending on the commands included into C2 traffic, 
the attacker may use the backdoor to steal sensitive data from the target.

The collected data is then delivered back with the C2 traffic. But this time, 
the rootkit has to masquerade it again in order to bypass the guards: 
the wolf dresses itself in sheep's clothing once again. Once outside, 
the C2 traffic delivers the collected data back to the attackers. 

During an entire operation, the normal web traffic, depicted as sheep, keeps 
flowing to and from the web server through the allowed gate. Visually, the 
C2 traffic stays largely indistinguishable from the legitimate web traffic.

Technical analysis of Cloud Snooper network operations 
To trigger the payload (snoopy) activation, an attacker 
would send the following packet: 



10March 2020

Cloud Snooper - SophosLabs

Next, the snoopy module would be accessed by the C2, using source 
port 7070 for TCP-based or 8080 for UDP-based control: 

On the way back, the NF_INET_LOCAL_OUT hook handler rebuilds the 
packet again to make sure its source port is restored back to the original 
port the incoming packet was destined for. This way, the C2 traffic 
transparently flows through the port(s) allowed by AWS SGs: 

No other Netfilter hooks within the chain, such as iptables INPUT/OUTPUT 
rules, will process the packet if the hook returns NF_STOP. This appears to be 
the purpose of the TCP command 2020: to bypass other Netfilter hooks.

In instances where the Netfilter receives inbound traffic with a source port of 1010/
TCP, it directs the contents to the Secure Shell (SSH) port, 22/TCP. For outbound 
traffic, we have seen two variants using either port 80 or port 443. This will allow for 
an SSH connection to step around an AWS SG with IP restrictions on traffic to port 22.

Hence, the ultimate purpose of the snd_floppy rootkit is to provide a covert control 
channel for the snoopy usermode process, running on a compromised host.

Such covert control channels can be established via any port 
allowed by AWS SGs, be it 80, 443, 22, or any other port.

From the outside, the compromised system will show an unusually large volume 
of traffic that comes from the remote ports 6060, 7070, 8080, and 9999.

But what is the snoopy module? What does it do?



11March 2020

Cloud Snooper - SophosLabs

Sample #3
MD5 c7a3fefb3c231ad3b683f00edd0e26e4

SHA1 8ba26a4082c80cc216cee89b2033678256f226ef

SHA-256 ec22c6e3537fcc0003bb73dd42f41ae077b2cb3ad9cdab295bca46dc91eac1e1

File size 305,309 bytes

Internal name snoopy, rrtserver

snoopy is a backdoor trojan that can be executed both as a command 
line tool and as a daemon (though it needs to be launched with the -d 
flag for that). The backdoor's internal version is 3.0.1-2.20170303.

It opens HTTP and/or DNS services on a compromised system, and allows tunneling 
of the traffic, operating both as a reverse SOCKS5 proxy server, and client.

For example, the incoming control traffic can also be relayed to a different server.

When run with -h option, the tool prints the following syntax:

Usage: rrtserver [OPTIONS]

OPTIONS:

 -h

 -d

 -s IPv4[:PORT:{udp|tcp}:{dns|http|none}]

 Where:

 -h option will print out the usage above

 -d will run the tool as daemon

 -s allows to specify a server address to bind the listening 
socket to, its port number, and what protocol is used for the 
traffic: either UDP-based DNS or TCP-based HTTP

The binary requires root privilege; when run, it calls geteuid() to 
get the user ID. If it fails, it prints the line below and quits:

"Administrator privileges are required."

It sets the working directory to /tmp and obtains a lock for the file /tmp/rrtserver-
lock. The lock file is used to make sure there is only one version of the tool running.

The incoming HTTP traffic is accepted on port 2080, and DNS traffic on port 2053.

NOTE: the port numbers 2080 and 2053 are default ones; the tool can 
be executed with different port numbers specified as parameters.

The rootkit parses the received DNS/HTTP traffic to extract hidden 
commands within it - such commands are called "rrootkit messages" 
and are distinguished by the presence of a magic header or marker.

For example, to find "rrootkit messages" in HTTP traffic, Snoopy parses 
the HTTP request to see if it starts with "GET /* HTTP/1.1\r\
ndata:" or "HTTP/1.1 200 OK\r\ndata:".

Next, the "rrootkit messages" would start from a magic header 
0xE381B7F5. If this header is found, such data is called msg-data.



12March 2020

Cloud Snooper - SophosLabs

The received msg-data is then decrypted with RC4, using the quite specific 
key 'A YARN-based system for parallel processing of large data sets'.

The tool then initiates several additional components. These 
components will process the received msg-data.

Depending on a separate magic header within each msg-data, 
the data will be processed by a different component.

The initiated components are:

 Ì view-shell (magic header 0xFC72E392): pty (pseudo terminal) that allows remote shell

• the HISTFILE variable is cleared, to make sure /bin/sh execution leaves no history

• the received commands are then executed with /bin/sh   

 Ì view-file (magic header 0xFC72E393): file manager that accepts three commands:

• 'get' - read files

• 'put' - save file

• any other command - execute file with popen() syscall

 Ì view-proxy (magic header 0xFC72E394): proxy server that accepts the following commands:

• 'exit' or 'quit' - quit proxy server

• 'socks5' - starts SOCKS5 proxy server, authentication is provided with 

user/password passed with the '-u' and '-p' parameters

• 'rcsocks-cmd: socks is closed.' - closes SOCKS proxy

The SOCKS5 server is based on the open-source sSocks proxy implementation:

sSocks is a package which contains: a socks5 server implements RFC 1928 

(SOCKS V5) and RFC 1929 (Authentication for SOCKS V5), a reverse socks 

server and client, a netcat like tool, which supports socks5 with authentication 

and a socks5 relay (run a server and send to a another socks5 server).

 Ì view-pipe (magic header 0xFC72E398): p2p communicator, 

that receives commands 'pwd', 'exit', 'quit', 'connect'

On receiving the 'connect' command, it accepts the same 
parameters as the command-line tool (server IP, port, protocol) 
and starts tunneling commands to another peer.

The pipe appears to be used to establish connections to other peers.

The negotiation protocol to other peers includes a 
message 'rrootkit-negotiation: hello'.

Once the connection is established, the logged message displays what 
peers have been connected, and that a new network node is now open:

• "view-pipe: left[address, port]->right[address, port]."

• "view-pipe: the network node is opened." 

 Ì view-myproto (magic header 0xFC72E397): a 'ping'/'pong'; 

depending on a flag it receives, it either:

• receives a message "rrootkit-negotiation: hello", then 

responds back "rrootkit-negotiation: ok, go on"

• checks if the received message was "rrootkit-negotiation: ok, go on"

https://github.com/tostercx/ssocks


13March 2020

Cloud Snooper - SophosLabs

 Ì loop-notifier – creates a pipe, a data channel for inter-process communication (IPC)

The backdoor allows control via IPC pipe as a backup control channel.

Logging
snoopy stores many debug messages in clear text.

However, with the internal level of logging set to 0 (none), no 
debug messages are ever printed. Hence, these debug messages 
are only used in the testing phase of the malware.

Some of the debug messages are in Chinese:

	Ì 远程路径太长! - The remote path is too long!

	Ì 远程文件不存在! - The remote file does not exist!

	Ì 远程内存空间分配失败! - Remote memory space allocation failed!

	Ì 远程路径不存在! - The remote path does not exist!

	Ì 远程文件已存在! - The remote file already exists!

	Ì 连接失败! - Connection failed!

	Ì 连接成功! - Connection succeeded!

	Ì 参数错误! - Parameter error!

Some messages reveal poor English grammar:

 Ì view don't found

 Ì view-shell: data do not belong to SHELL

If the rootkit is patched so that it always logs debug 
messages, it will happily print them on screen:

Some additional details on unused/broken 'rootkit' functionality
The tool has an unused (never called) function kernel_load() to drop 
and load kernel module from its own file. If the module /proc/sys/
rrootkit is missing, it drops /tmp/rrtkernel.ko and loads it with:

insmod /tmp/rrtkernel.ko 2>/dev/null

Next, /tmp/rrtkernel.ko is unlinked, so it's used, 
temporarily, to drop and then load a kernel module.

The function kernel_load() is never called though - there are no references leading to it.



14March 2020

Cloud Snooper - SophosLabs

Apart from that, /tmp/rrtkernel.ko is written by reading its 
own binary file, starting from the file offset of nearly 2GB:

readlink("/proc/self/exe", pathname, 0x200uLL);

myfd = open(pathname, 0);

lseek(myfd, g_self_size, SEEK_SET); // file offset is set to offset bytes

where g_self_size is set to 0x72C9E41D:

g_prev_self_size_mark  dd 0EF71B69Ah  // unused

g_self_size            dd 72C9E41Dh   // <-- nearly 2GB

g_post_self_size_mark  dd 33FF0055h   // unused

This code will not work - even if this function was called (it wasn't), it would have failed.

It would appear the author was tossing around the idea of dropping and loading a 
kernel module from its own file. There are two unused variables 'prev self size mark' and 
'post self size mark' which might indicate some experiments the author has attempted. 

The original intention is not clear. However, the presence of markers 'prev self 
size mark' and 'post self size mark' around the file offset variable is intriguing.

The markers could be used to find the exact location of the offset in the binary:

This way, an external patcher could find and modify the actual offset 
from where the kernel module could be read, saved, and loaded. 
For example, if it's set to the end of the snoopy binary, the kernel 
module can thus be read and loaded from the appended data.

However, this feature wasn't implemented, and should, 
therefore, be considered experimental.

Building a Client
By knowing how the C2 protocol works, it is possible to build a client 
to talk to snoopy either directly, or via snd_floppy rootkit.

What for?

Firstly, the client can ping a host located in the same 
network to see if it's infected or not.

Secondly, if a host is infected, the client can disinfect it remotely by instructing 
snoopy to execute its disinfection routine (see the rmmod command below 
– after serving it, the rootkit stopped responding as it was unloaded).

Last but not least, building such a client is cool.

The following screenshot demonstrates the client in action. The snd_
floppy rootkit intercepts traffic on port 22, even though it's destined 
for the SSH daemon (seen as 981/sshd in the snapshot below). 
Next, it re-routes such traffic internally to the snoopy module.



15March 2020

Cloud Snooper - SophosLabs

As long as the rootkit is active, the attackers may attempt to smuggle the 
control traffic through any port allowed by the firewall (the screenshot 
demonstrates that using ports 21 and 24 makes no difference – these 
packets are still re-routed by the rootkit to the backdoor).

Another variant of the rootkit
During the investigation, a different Linux host was found to be 
running a different variant of the snd_floppy rootkit.

Sample #4
MD5 9cd93bb2a12cf4ef49ee1ba5bb0e4a95

SHA1 b37fdb9d32e90d4be1e0bd187ef64899038c3785

SHA-256 620616d76334204516501c477ae46953bfc9ab8c29e096ae4f76f2e732e69845

File size 544,832 bytes

Internal name snd_floppy

This kernel module is very similar to the variant described above. The 
embedded resource is encrypted with the same RC4 key.

The only difference is in the embedded file itself. It is 
a different file dropped as /bin/vsftpd

Sample #5
MD5 15e96f0ee3abc9d5d2395c99aabc3b92

SHA1 8a34cb3d4431985dafe7e2f9843552b56b2a6641

SHA-256 cedb5b81f88afbb5b718c3e66ab25bf945476b8e64b1da0f204d3860a694cce5

File size 60,456 bytes

Internal name vsftpd



16March 2020

Cloud Snooper - SophosLabs

/bin/vsftpd in this case is not a well-known FTP server 
daemon but a backdoor that listens on port 2080.

The communications are encrypted with a custom algorithm based on AES and 
an additional XOR round. Key initialization is based on hashing the string "replace 
with your password" and a key received from the server, hashed with SHA-1.

The bot can execute three commands, encoded with integer numbers 1 to 3:

  1:  download specified file
 internal name: tshd_get_file()
  2:  upload file and save it under a specified file name
 internal name: tshd_put_file()
  3:  execute remote shell command with /bin/sh
     internal name: tshd_runshell()

A different version of vsftpd, a backdoor, recovered as a file 
named ips, was found to be listening on port 10443.

Sample #6
MD5 2b7d54251068a668c4fe8f988bfc3ab5

SHA1 61f824bd85630b2bcc48defb7b6cb2a963a744c6

SHA-256 1d6fe2f90b4e05625167c8601f07eb33d9eee4623e3338ef264cc6961f5175a0

File size 35,580 bytes

Internal name ips

The presence of ips suggests that another 32-bit version of snd_
floppy that redirects incoming traffic into port 10443 may exist.

The samples #1-#6 described above represent a combination of a rootkit 
and a passive backdoor that accepts connections on an open port.

Sample #7
Apart from those samples, we have also recovered a different Linux backdoor, a 
backdoor that does not open any ports. Instead, it relies on a C2 polling mechanism.

The analysis of this bot functionality reveals it belongs to Gh0st 
RAT, only it's a version that has been written for Linux.

It is hard to tell if Gh0st has always existed as a multi-platform 
RAT, or whether the attackers developed a Linux-based Gh0st after 
the source code of Gh0st for Windows was leaked online.

At the end of the day, it makes sense to have clients deployed across 
various platforms, using a unified configuration format and C2 
protocol, while having a single server for all those clients.

Still, we will leave the guesswork out of this description, rather 
focusing on what the recovered samples actually do.

MD5 ecac141c99e8cef83389203b862b24fd

SHA1 2f4ee1c39f78ecde5a84233233d02b355022aa50

SHA-256 c49371cd8dd33f725a780ea179e6281f5cb7f42e84a00836c8fe3350b7b9b2d0

File size 64,412 bytes

File Name /bin/snort

https://en.wikipedia.org/wiki/Gh0st_RAT
https://en.wikipedia.org/wiki/Gh0st_RAT
https://github.com/sincoder/gh0st


17March 2020

Cloud Snooper - SophosLabs

/bin/snort is a backdoor that contacts a remote C2 to fetch 
and execute commands. Its internal config file is encrypted 
with RC4, using the password: "r0st@#$":

185.86.151.67:443;|1;1;1;1;1;0;0;|10-20;|10

The '1;1;1;1;1;0;0;' part of the config are the 
flags that stand for seven days of the week. 

The '10-20;' seems to indicate working hours (10 a.m. to 8 p.m.), so 
current weekday and current hour should match what's in config. 

If there is no match, the bot falls asleep for just over seven 
minutes (423.756 seconds), then checks the time again. 

In case of a match, it attempts to reach the C2; if it 
cannot, it retries again in one minute. 

Traffic to the C2 is encrypted with double RC4, where a key 
is randomly generated based on the current time. 

The backdoor has six commands:

 Ì The bot clears environmental variable HISTFILE to make sure no 

history is kept for /bin/bash execution; the C2 responds with a 

string, and the bot sets TERM variable to that returned string 

Next, it receives a command and executes it with /bin/bash, with or without a 

'-c' switch (allows for executing commands as provided within the quotes)

The output from the executed command is sent back.

 Ì File manipulations:

• 'Locate and obtain timestamp for the specified file

• Rename specified file 

• Recursively delete all files in the specified directory

 Ì More file manipulations:

• Read the contents of the specified file

• Recursive search for files 

• Write data into a specified file 

• Create specified directory

 Ì The next two commands manipulate file descriptors with 

fcntl() syscall, and fork child processes 

 Ì Receive data and save it into a local file /usr/include/sdfwex.h 

It appears that /usr/include/sdfwex.h contains a timestamp (year, 
month, day, hour, minutes) for when the C2 connection should commence. 

If the bot cannot open this file, it tries to open /tmp/.llock – if 
that file also cannot be opened, the bot skips the timestamp 
check, and proceeds with trying to connect to the C2.



18March 2020

Cloud Snooper - SophosLabs

Sample #8
A backdoor very similar to /bin/snort was recovered 
as /usr/bin/javad, described below:

MD5 67c8235ac0861c8622ac2ddb1f5c4a18

SHA1 6aa0b6bfe059354782febd4fa665dbacd726b488

SHA-256 a8db92a8f34caa5084a3fdb8a683a1854bff84612dfd25a965bc12a454a38556

File size 64,412 bytes

File Name /usr/bin/javad

This backdoor is similar to the sample #7 
(c49371cd8dd33f725a780ea179e6281f5cb7f42e84a00836c8fe3350b7b9b2d0). 
It uses a different configuration:

cloud.newsofnp.com:443;|1;1;1;1;1;1;1;|00-24;|1

An analysis of network activity revealed that a similar domain – ssl.
newsofnp.com was also resolved from a Windows host.

Sample #9
A backdoor very similar to /bin/snort and /usr/bin/javad:

MD5 850bf958f07e6c33a496b39be18752f3

SHA1 ea579984897dd585af348ecbfc112044a0346ca1

SHA-256 dbd926b097e5a2b142b898fce94fd076b0c6283f0e38a1c6ce01ab87cf41edda

File size 66,000 bytes

File Name nood.bin

 
Just like other samples, it decrypts its config file using RC4 key "r0st@#$".

The decrypted config is:

load.CollegeSmooch.com:82;|1;1;1;1;1;1;1;|00-24;|10

Just like /bin/snort and its Windows counterpart NSIProvider.dll, it 
also checks if the current day matches the configuration file and falls asleep 
for exactly 423.756 seconds (just over seven minutes) before it tries again. 

For the beacon signal it sends to the C2, it collects basic system 
configuration into a fingerprint. This info consists of:

 Ì Hostname and IP address 

 Ì Platform type, as read from /proc/version, such as 'x86_64' 

 Ì Full name of the Linux version, as read from /etc/issue.net and /etc/issue, such as: 

'Red Hat Enterprise Linux Server release 6.10 (Santiago)' 

or 

'Ubuntu 16.04.5 LTS' 

The communications with the C2 are always encrypted using a bespoke algorithm 
that relies on a time-based random RC4 key with extra encryption layers. 

The backdoor commands received from the C2 and executed by nood.
bin fully match /bin/snort functionality. That is, it provides remote 
shell and a dedicated remote file manipulation capability, such as an 
ability to read, write, rename, delete, or recursively search for files.



19March 2020

Cloud Snooper - SophosLabs

Windows Malware

Sample #10
MD5 a59c83285679296758bf8589277abde7

SHA1 2ff1ff96fe83c607c8b7a4a279b6bc3103de1d33

SHA-256 f7d69c21c683e19624169d3bc70d06b2896a9ccf6186301d16f500db520d3b19

File size 219,648 bytes

File Name: C:\ProgramData\NSIProvider\NSIProvider.dll

Sample # 11 - encrypted payload
MD5 76380fea8fb56d3bb3c329f193883edf

SHA1 cd848eb12be9588609ed9e5afad74adfd5c3798a

SHA-256 2bc8fea05b1e9409c3cf065a30aa450ace911d91fdbb55ad282c2925a9aac766

File size 516,097 bytes

File Name: C:\ProgramData\NSIProvider\NSIProvider.dll.crt

NSIProvider.dll is a malicious Windows service DLL, executed under svchost.exe.

The service name is NSIProvider, registered with the 
description name "Netword Store Interface Provider."

NOTE: 'Netword' with 'd'.

The DLL is heavily obfuscated.

Once started as a service, it conveniently spits out debug 
messages documenting the operation. 

Sysinternal's DebugView shows these messages:

00000000 0.00000000 [4052] DLL_PROCESS_ATTACH. 

00000001 0.00489140 [4052] Rundll32Entry() 

00000002 0.01733349 [4052] ServerLoadPayload() 

00000003 0.01749189 [4052] Get Module File Name. 

00000004 0.01753826 [4052] Get Payload File Name. 

00000005 0.01757095 [4052] Switch to payload directory. 

00000006 0.01768074 [4052] Read Payload File. 

00000007 0.01811264 [4052] Decrypt Payload Data. 

00000008 0.06122175 [4052] Verify Payload Data. 

00000009 0.06732560 [4052] ServerExecutePayload() 

00000010 0.06740102 [4052] Call Shellcode.

Once loaded, the DLL locates the encrypted payload file and loads it into memory.



20March 2020

Cloud Snooper - SophosLabs

The steps are: 

 Ì Get current module filename with GetModuleFileName() API, i.e. %PATH%\NSIProvider.dll

 Ì Concatenate current module filename with '.crt', e.g. %PATH%\NSIProvider.dll.crt

 Ì Allocate memory VirtualAlloc() and read the entire payload file into memory

 Ì Initialise a permutation table that consists of 256 DWORDs

Each value of the permutation table is calculated as:

*ptr= ((*ptr >> 1) & 0x54384748 | ~(*ptr >> 1) & 0xABC7B8B7) ^ 0x467F3B97;

...

PERM_TABLE[*index] = *ptr;

 Ì Start decryption loop – in this loop, each byte of the encrypted payload is subtracted 

from a key value; the key value itself is calculated in each iteration based on the 

previous key value, current index of the decrypted byte, and the permutation table:

ptr = __ptr_index++;

val = PERM_TABLE[((*ptr & 0x67612505 | ~*ptr & 0x989EDAFA) ^ (KEY 

& 0x67612505 | ~KEY & 0x989EDAFA)) & ((*ptr & 0x67612505 | ~*ptr & 

0x989EDAFA) ^ (KEY & 0x67612505 | ~KEY & 0x989EDAFA) ^ 0xFFFFFF00)];

KEY = (val & 0x432AA81D | ~val & 0xBCD557E2) ^ ((KEY >> 

8) & 0x432AA81D | ~(KEY >> 8) & 0xBCD557E2);

 Ì The decrypted payload reveals a checksum, a number of zero 

bytes, followed by the initial shellcode itself:

The decrypted payload blob is copied into a newly allocated memory buffer and 
the initial shellcode (starts from bytes EB 17 58 in the image above) is called.

The initial shellcode will then decrypt the rest of the blob using an XOR key 
that starts from 0x2B, and then incremented by the index of the decrypted 
byte, i.e. the XOR key values are: 0x2B, 0x2C, 0x2E, 0x31, etc.



21March 2020

Cloud Snooper - SophosLabs

As the rest of the blob is decrypted, the configuration file 
is decrypted as well, followed by other parts.

After the initial shellcode has finished the decryption, 
the fully decrypted blob will consist of:

 Ì Initial shellcode

 Ì Decrypted config:

Microsoft.Windows.BNG|‪ssl.newsofnp.com:443‪;|1;1;1;1;1;1;1;|00-24;|1

 Ì Zlib-compressed LIBEAY32.dll (77,871 bytes, 167,936 bytes when decompressed)

 Ì Zlib-compressed LIBEAY32.dll (386,876 bytes, 851,968 bytes when decompressed)

 Ì Backdoor, implemented in the form of a second-stage shellcode

Once it's decoded, the second-stage shellcode is called – this is the backdoor itself.

When it gets control, it dynamically obtains all the APIs it needs by using 
hard-coded API hashes. To find matching hashes from the API names, the 
shellcode relies on a slight modification of the ROR-13 algorithm. The only 
difference is that it checks if the zero byte character is at the end of the 
loop, and thus has an additional ROR for the terminating zero byte.



22March 2020

Cloud Snooper - SophosLabs

All the required DLLs are loaded dynamically.

Next, it will decompress and load two stubs as DLLs. Both 
DLLs have the internal name LIBEAY32.dll. 

Both DLLs rely on an older (2004) build of the libeay32.dll. Below 
are some strings found in the body of these DLLs:

MD2 part of OpenSSL 0.9.7d 17 Mar 2004

MD4 part of OpenSSL 0.9.7d 17 Mar 2004

MD5 part of OpenSSL 0.9.7d 17 Mar 2004

SHA part of OpenSSL 0.9.7d 17 Mar 2004

SHA1 part of OpenSSL 0.9.7d 17 Mar 2004

The backdoor relies on these DLLs for crypto-functions required to communicate with the C2.

The config format is consistent with the ELF binaries, i.e., the seven '1;' means the bot 
should be active seven days a week, all hours (00-24), the C2 communicates via HTTPS.

The. sSame config is known to be used by the Gh0st RAT.

Just like /bin/snort described above, the bot also checks if the 
current day and hour match what's specified in the config.

If there is no match, the bot also falls asleep for just over seven 
minutes (423.756 seconds), then checks the time again.

The code snippets below demonstrate that the 423,756-millisecond delay specified 
within /bin/snort executable is identical to its Windows counter-part:

ELF executable: /bin/snort Windows shellcode:

On Linux, the number 423,756 is multiplied by 1,000, then passed to 
usleep() syscall that takes an argument in milliseconds.

On Windows, the same number is passed to Sleep() API, 
which takes the argument in milliseconds.

In both cases, the achieved delay is identical: 7.062 seconds.

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/decoding-network-data-from-a-gh0st-rat-variant/


23March 2020

Cloud Snooper - SophosLabs

Conclusion 
This case is extremely interesting as it demonstrates the 
true multi-platform nature of a modern attack.

A well-financed, competent, determined attacker will unlikely ever to 
be restricted by the boundaries imposed by different platforms.

Building a unified server infrastructure that serves various agents 
working on different platforms makes perfect sense for them.

When it comes to prevention against this or similar attacks, AWS SGs provide a robust 
boundary firewall for EC2 instances. However, this firewall does not eliminate the 
need for network administrators to keep all external-facing services fully patched.

The default installation for the SSH server also needs extra steps to harden 
it against attacks, turning it into a rock-solid communication daemon.

IOCs

Ports open on a local host:
tcp 2080
udp 2053
tcp 10443

Example:
user@host:~$ sudo netstat -peanut | grep ":2080 \|:2053 "
tcp  0  0 0.0.0.0:2080    0.0.0.0:*    LISTEN  0  34402  2226/snoopy
udp  0  0 0.0.0.0:2053    0.0.0.0:*            0  34398  2224/snoopy

To check if these ports are open on a remote compromised host with IP 

192.168.5.150:
user@host:~$ sudo nmap 192.168.5.150 -p 2080
...
PORT     STATE    SERVICE
2080/tcp filtered autodesk-nlm

user@host:~$ sudo nmap 192.168.5.150 -p 2053 -sU
...
PORT     STATE    SERVICE
2053/udp filtered lot105-ds-upd 

Inbound connections from the remote ports:
6060, 7070, 8080, 9999, 2020, 1010

Domains:
cloud.newsofnp.com
ssl.newsofnp.com

IPs:
62.113.255.18
89.33.246.111



Cloud Snooper - SophosLabs

United Kingdom and Worldwide Sales
Tel: +44 (0)8447 671131
Email: sales@sophos.com

North American Sales
Toll Free: 1-866-866-2802
Email: nasales@sophos.com

Australia and New Zealand Sales
Tel: +61 2 9409 9100
Email: sales@sophos.com.au

Asia Sales
Tel: +65 62244168
Email: salesasia@sophos.com

© Copyright 2020. Sophos Ltd. All rights reserved.

Registered in England and Wales No. 2096520, The Pentagon, Abingdon Science Park, Abingdon, OX14 3YP, UK

Sophos is the registered trademark of Sophos Ltd. All other product and company names mentioned are trademarks or 

registered trademarks of their respective owners.

2020-03-05 WP (PC)

Filenames:
/tmp/rrtserver-lock
/proc/sys/rrootkit
/tmp/rrtkernel.ko
/usr/bin/snd_floppy

Kernel module:
snd_floppy

Example:
user@host:~$ sudo lsmod | grep "snd_floppy"
snd_floppy     316594    0

Syslog message:
"...insmod: ERROR: could not insert module /
usr/bin/snd_floppy: File exists"
"...kernel: snd_floppy: loading out-of-tree module taints kernel."
"...kernel: snd_floppy: module verification failed: signature 
and/or required key missing – tainting kernel"


